If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36n^2=16
We move all terms to the left:
36n^2-(16)=0
a = 36; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·36·(-16)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48}{2*36}=\frac{-48}{72} =-2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48}{2*36}=\frac{48}{72} =2/3 $
| −5+8x=−15 | | j^2+99=99 | | 6^(8x−3)=50 | | X+2+9x-32=180 | | 2981.1+r=6378.1 | | q+(-5)=8/3 | | 3(x-4)2+7=34 | | 60n=37° | | -5x+30-25=0 | | 3(-4x+1)=8x+4(-x+2) | | 5.50x+625=6x | | S+2t=0 | | 4x-x=2x-5 | | -7x-4x+6=2(-3x+5) | | 30=6x+3 | | 4-x-4=30-6 | | 6.50x+20=4x | | (3x+10)^2-22=42 | | 2.8x-0.22=1.4x-1.48 | | 8h+7h+7h+4h+7h+10h+10h=323.30 | | 3(2x+4)=x+19 | | 3*4^2k+8=24 | | P+Q=p-Q | | 2y=-3-1 | | 6-(x/6)=8 | | 2/3x+2=22 | | 7a-2/5-6a=7/10-1/5 | | 6y-5(y-6)+2=8 | | 10=0.60x+1 | | 4x+72x÷100=944 | | 3^(x+7)=6x | | 36=-16t^2+25 |